On Dynamic Feature Weighting for Feature Drifting Data Streams
نویسندگان
چکیده
Abstract.
منابع مشابه
Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملDynamic Feature Space and Incremental Feature Selection for the Classification of Textual Data Streams
Real world text classification applications are of special interest for the machine learning and data mining community, mainly because they introduce and combine a number of special difficulties. They deal with high dimensional, streaming, unstructured, and, in many occasions, concept drifting data. Another important peculiarity of streaming text, not adequately discussed in the relative litera...
متن کاملImage Retrieval Using Dynamic Weighting of Compressed High Level Features Framework with LER Matrix
In this article, a fabulous method for database retrieval is proposed. The multi-resolution modified wavelet transform for each of image is computed and the standard deviation and average are utilized as the textural features. Then, the proposed modified bit-based color histogram and edge detectors were utilized to define the high level features. A feedback-based dynamic weighting of shap...
متن کاملA Novel Scheme for Improving Accuracy of KNN Classification Algorithm Based on the New Weighting Technique and Stepwise Feature Selection
K nearest neighbor algorithm is one of the most frequently used techniques in data mining for its integrity and performance. Though the KNN algorithm is highly effective in many cases, it has some essential deficiencies, which affects the classification accuracy of the algorithm. First, the effectiveness of the algorithm is affected by redundant and irrelevant features. Furthermore, this algori...
متن کاملGranularity Adaptive Density Estimation and on Demand Clustering of Concept-Drifting Data Streams
Clustering data streams has found a few important applications. While many previous studies focus on clustering objects arriving in a data stream, in this paper, we consider the novel problem of on demand clustering concept drifting data streams. In order to characterize concept drifting data streams, we propose an effective method to estimate densities of data streams. One unique feature of ou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016